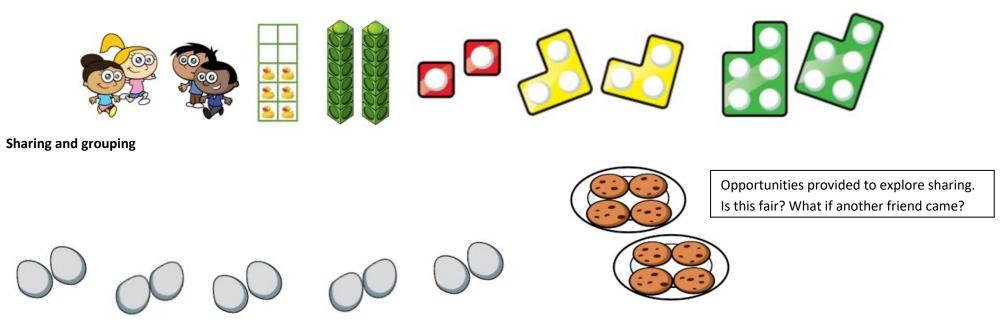
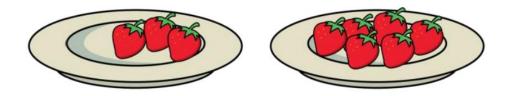


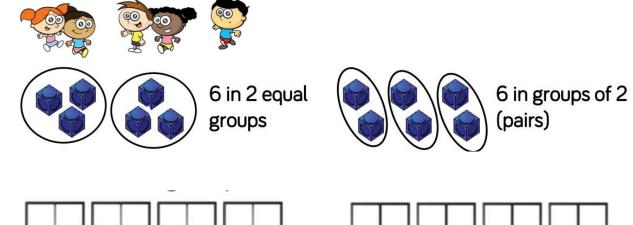
Growing, loving and learning in the arms of Mary'

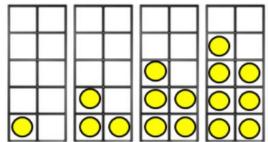
Calculation Policy – Multiplication and Division


Nursery


- Opportunities through daily routines e.g. snack
- Practical sharing and grouping activities

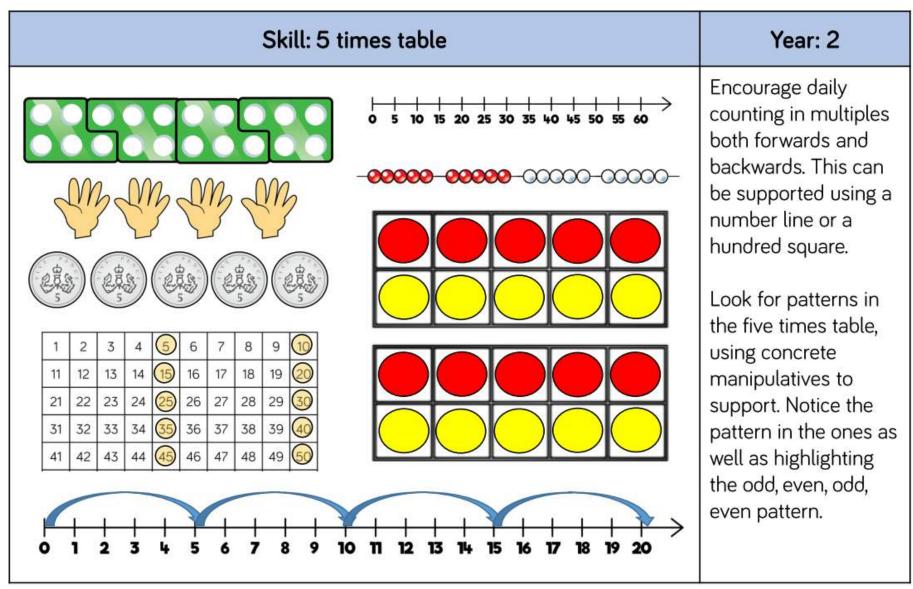
Reception


Unit 9: Find my pattern


Doubling

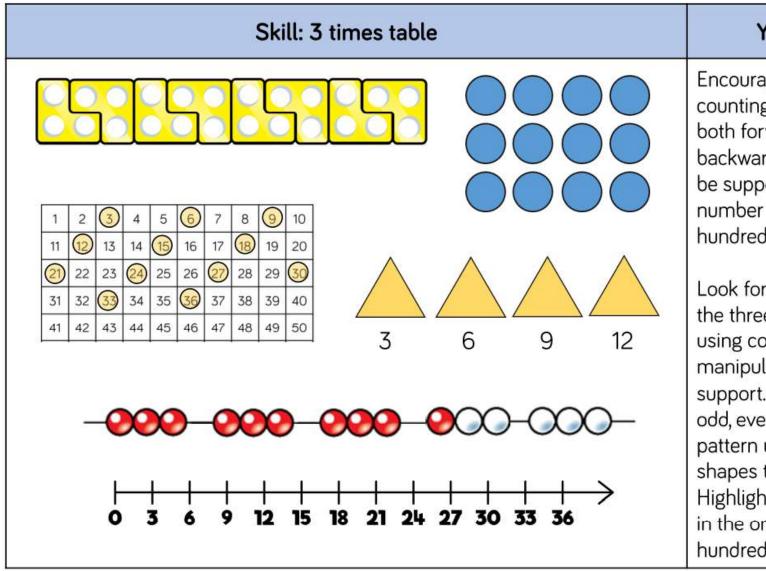
Even and odd

Children build pair-wise patterns on the 10 frames and sort them into those which have two equal groups (even numbers) and those which have two unequal groups (odd


Skill	Year	Representatio	ns and models
Recall and use	2	Bar model	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
2-times table		Money	Everyday objects
Recall and use	2	Bar model	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
5-times table		Money	Everyday objects
Recall and use	2	Hundred square	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
10-times table		Money	Base 10

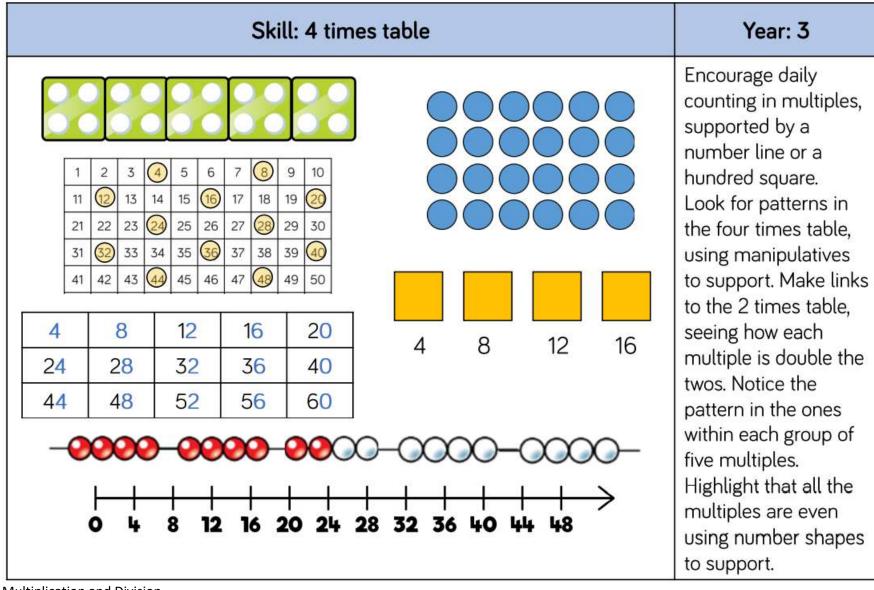
Skill	Year	Representatio	ns and models
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects

Skill	Year	Representatio	ons and models
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines


Skill: 2	times table	Year: 2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Encourage daily counting in multiples both forwards and backwards. This can be supported using a
		number line or a hundred square. Look for patterns in the two times table,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		using concrete manipulatives to support. Notice how all the numbers are even and there is a
0 1 2 3 4 5 6 7 8 9	10 11 12 13 14 15 16 17 18 19 20	pattern in the ones. Use different models to develop fluency.

พนเมตาเปล่าน มหารางกา

Skill: 10	times tal	ole									Year: 2
			+ 30 4) 100 x	\rightarrow	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.
	1	2	3	4	5	6	7	8	9		Look for patterns in
	11			14	-	16	-	18	19		the ten times table,
	21		-	_	-		-	-		0	using concrete
	31	-	-	-	-	-	-	-	39 (manipulatives to
	41				-	-		48		0	support. Notice the
	51	-	-	-	-	-		-		0	pattern in the digits-
	61					20888 j				2	the ones are always 0, and the tens increase
	71			-	-			78		30	60 VR 64 80 7953
	81	82	83	84	85	86	-	-		0	by 1 ten each time.
	91	92	93	94	95	96	97	98	99 (00	


ועועוט וויעועויע

Year: 3

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

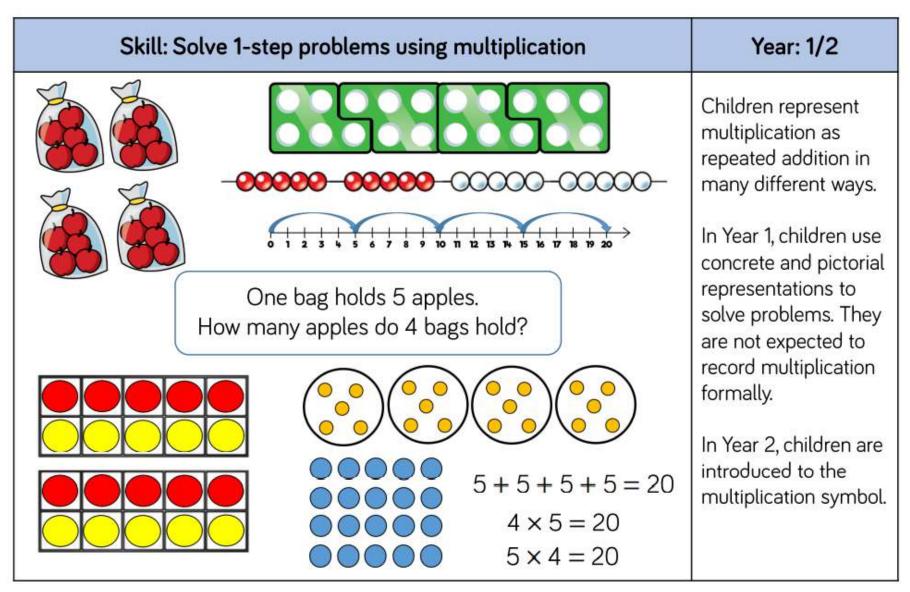
Look for patterns in the three times table, using concrete manipulatives to support. Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using a hundred square.

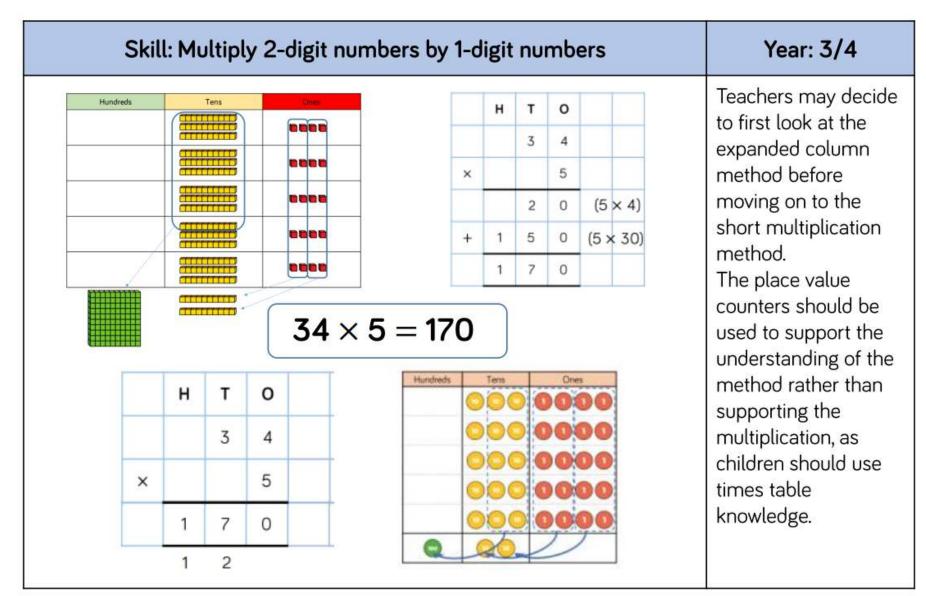
			Skill	: 8 times	s tab	ole									Year: 3
8 8 48	16 16 56	24 64	24 32 72 	32 40 80	1 11 21 31 41 51 61 91 91	2 12 22 52 62 72 82 92	-0	4 14 24 34 44 54 64 74 84 94 94 SO	5 15 25 55 65 75 85 95	66 76 86 96	7 17 27 37 47 57 67 77 87 97 97	 8 18 28 38 58 68 78 88 98 98 	49 59 69	50 60 70 80 90	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

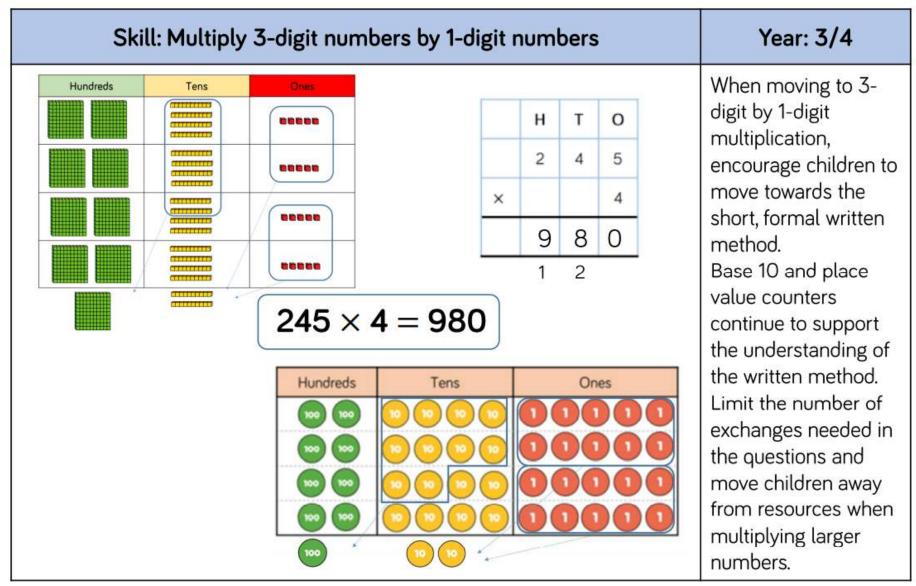
			Skil	l: 6 time	es tab	ole									Year: 4
					1 11 21 31 41 51 61	2 (12) 22 32 (42) 52 62	33 43	4 14 34 44 64	5 15 25 35 45 55 65	6 16 26 36 46 56 66	7 17 27 37 47 57 67	8 (18) 28 38 (48) 58 68	9 19 29 39 49 59	10 20 30 40 50 60 70	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table,
6 36 66	12 42 72	18 48 78	24 54 84	30 60 90	61 71 81 91	62 72 82 92	63 73 83 93	64 74 84 94	65 75 85 95	76 86 96	67 77 87 97	68 78 88 98	79 89	80 90 100	using manipulatives to support. Make links to the 3 times table, seeing how each
	● ● ● ● 6				↓ ↓ ↓2 ↓)	-C +- 54)() + 60) 	() + 72) >		multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

			Skill	: 9 time	s tat	ole									Year: 4
9	18	27	36	45	1 11 21 31 41 51	2 12 22 32 42 52	3 13 23 33 43 53	4 14 24 34 44 54	5 15 25 35 45 55	6 16 26 36 46 56	7 17 27 37 47 57	8 (18) 28 38 48 58	 9 19 29 39 49 59 	10 20 30 40 50	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a
54	63	72	81	90	61 71 (81) 91	100000	 53 63 73 83 93 	64 74 84 94	65 75 85 95	66 76 86 96	67 77 87 97	68 78 88	69 79	70 80 90	hundred square. Look for patterns in the nine times table, using concrete manipulatives to
-00	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>))))) 		00000)))) '2	-C + 81		≥ €	99		-			support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.

			Skill	:7 time:	s tat	ole									Year: 4
				25	1 11 21 31 41	2 12 22 32 42	23 33 43	4 14 24 34 44	5 15 25 35 45	6 16 26 36 46	 7 17 27 37 47 	8 18 28 38 48	9 19 29 39 49	10 20 30 40 50	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square.
7 42	14 49	21 56	28 63	35 70	51 61		53 63	54 64	65	66 76	57 67	58 68	59 69 70	60 70	The seven times table can be trickier to
	ייי דיי דיי)))) 		+ + + +	71 81 9 9 5	72 82 92	73 83 93	74 94 94	75 85 95	76 86 96	77 97 97 81 81	X	79 89 99 ➤	80 90 100	learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.

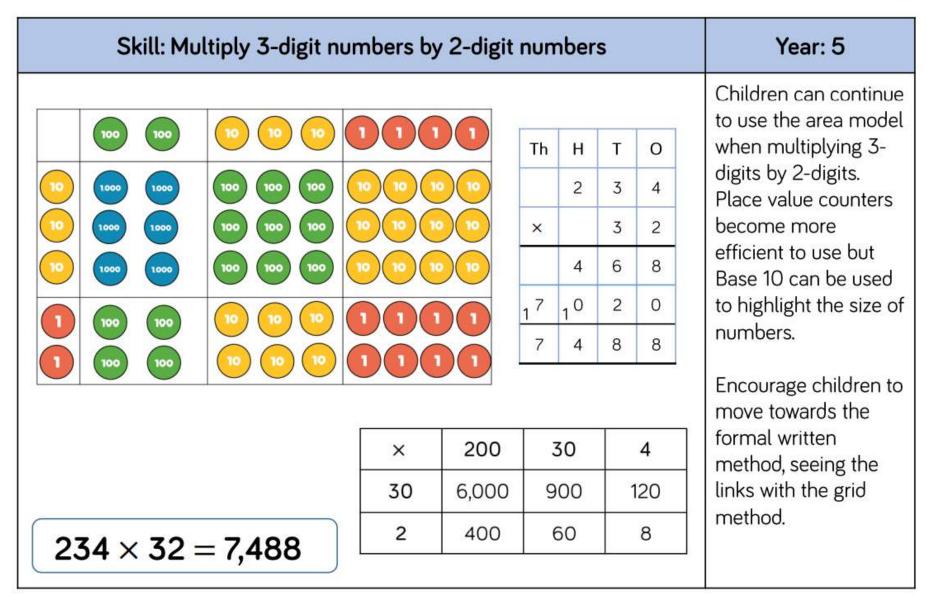

				Ski	ll: 11 tii	nes	tab	le									Year: 4
11 77	22 88	33 99	44 110	55			1 21 31 41 51 61 71 81 91	2 12 32 42 52 62 72 82 92	3 13 23 33 43 53 63 63 73 83 93	4 14 24 34 4 4 54 64 64 74 84 94	65	6 16 26 36 46 56 56 6 76 86 96	7	8 18 28 38 48 58 68 68 78 8 98	9 19 29 39 49 59 69 79 89 89	10 20 30 40 50 60 70 80 90 100	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete
l	• 0 1	1 22	33	44	55 60		7 8	8	9 9	1		121		52			manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100


				Skil	l: 12 times	tał	ole									Year: 4
12 72 132	24 84 144	36 96	48 108	Skil		1 11 21 31 41 51 61 71 81 91	2 (12) 22 32 42 52 62 (22) 82 92	3 13 23 33 43 53 63 63 73 83 93	4 14 34 44 54 64 74 84 94	5 15 25 35 45 55 65 75 85 95	6 16 26 46 56 66 86 86 86	7 17 27 37 47 57 67 77 87 97	8 18 28 38 68 68 78 88 98	69 79 89	10 20 30 40 50 60 70 80 90 100	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the
		-	+ 36	48	60 72 8			+	8 12	- 20	-+	2 74				pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.



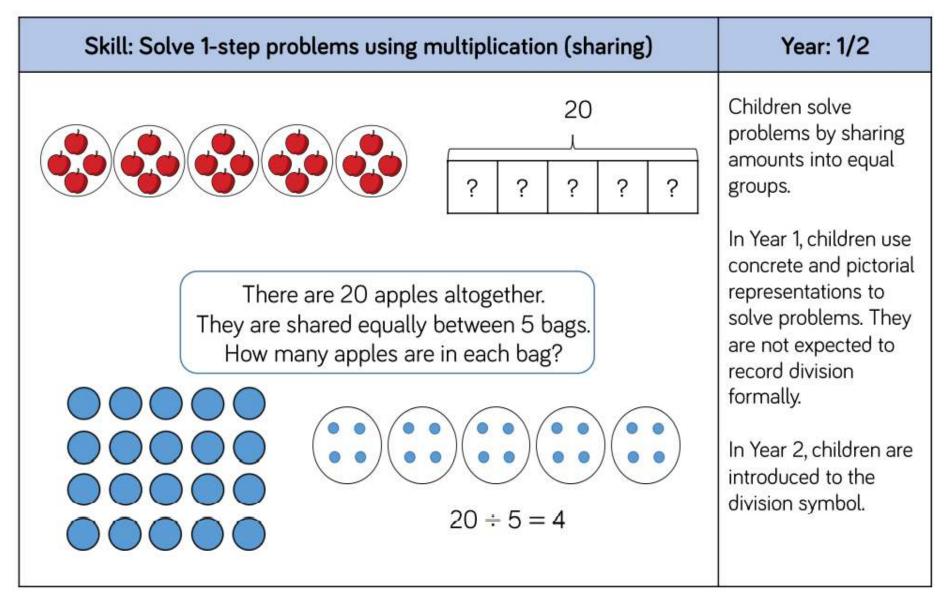
Skill	Year	Representatio	ons and models
Solve one-step problems with multiplication	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	3/4	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method
Multiply 4-digit by 1- digit numbers	5	Place value counters	Short written method

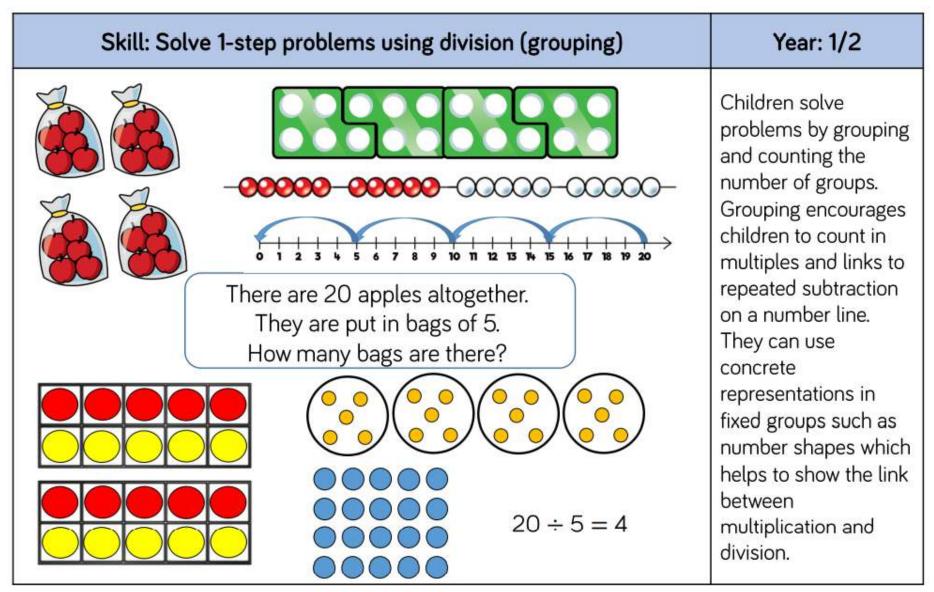
Skill	Year	Representatio	ns and models
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	5/6	Formal written method	

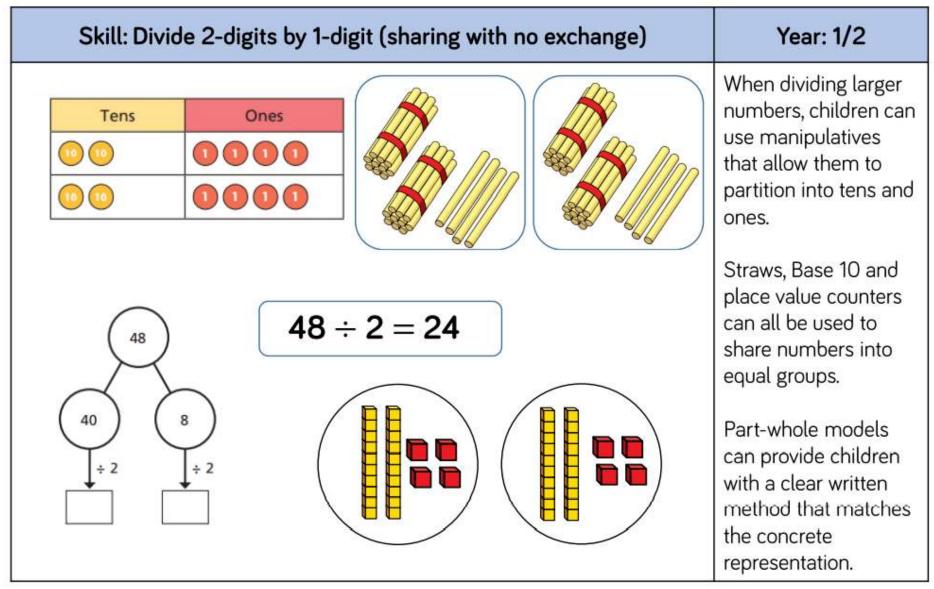


Skill: Multiply 4-	digi	t nur	nbe	rs b	y 1-di	git numbers	8	Year: 5
Thousands. 1000 100 100 100 100 100 100 1			© © 3 =		,478			When multiplying 4- digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and
		Th	н	т	0			struggling with their
		1	8	2	6			times tables,
	×				3			encourage the use of multiplication grids so
		5	4	7	8			children can focus on
	L	2		1				the use of the written method.

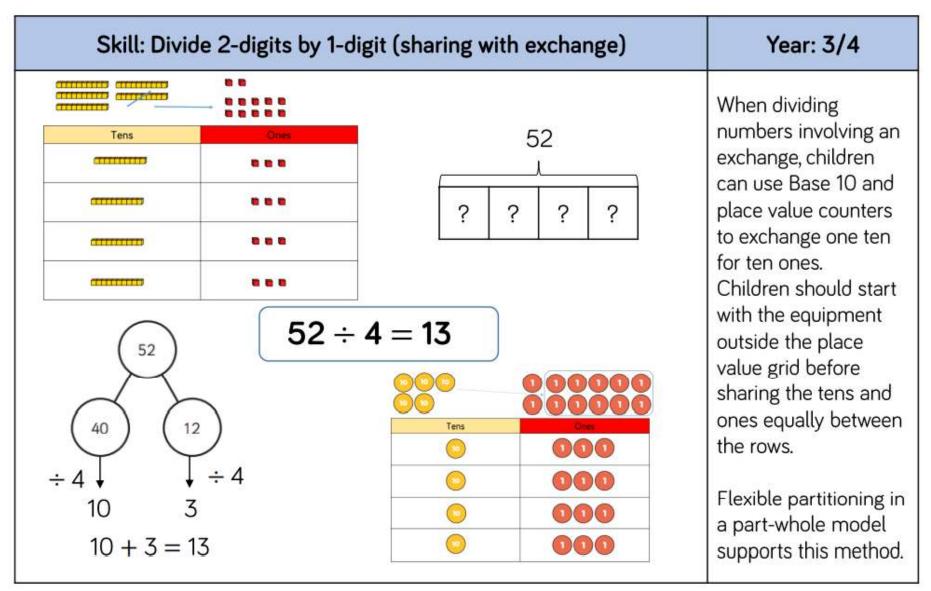
Skill: Multiply 2-digit	numt	pers by	2-digit	num	bers	3		Year: 5
								When multiplying a multi-digit number by 2-digits, use the area model to help children understand the size of the numbers they are using. This links to finding the area of a rectangle by finding
	2				н	т	0	the space covered by
	×	20	2			2	2	the Base 10.
	30	600	60	×		3	1	The grid method matches the area
	1	20	2			2	2	model as an initial
					6	6	0	written method before moving on to
22 × 31 = 682					6	8	2	the formal written multiplication method.

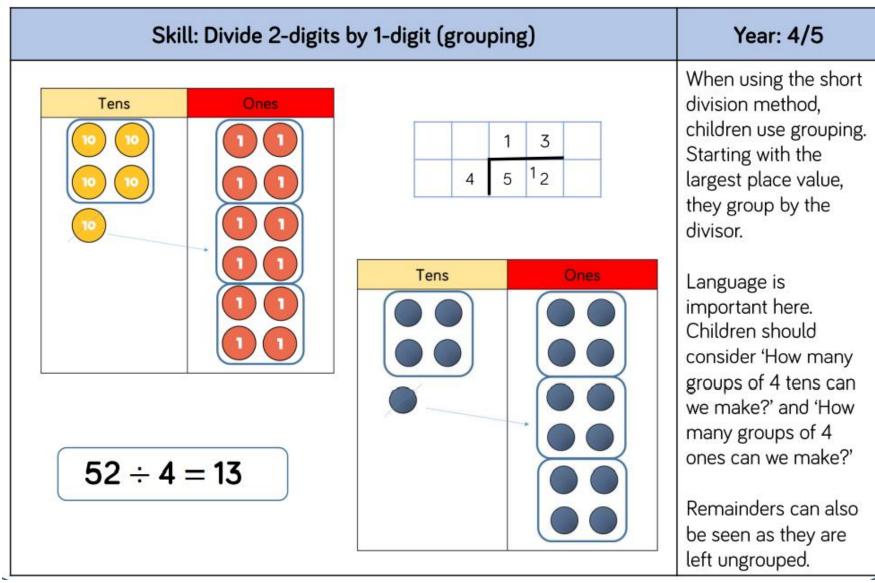

Skill: Multipl	y 4-di	git nu	mbers	by 2-	digit n	umbers	Year: 5/6				
	TTh	Th	Н	т	0		When multiplying 4- digits by 2-digits, children should be				
		2	7	3	9		confident in the written method.				
	×			2	8		If they are still struggling with times				
	22	1 5	9	1 7	2		tables, provide multiplication grids to support when they				
	5 1	4	7	8	0		are focusing on the use of the method.				
	7	6	6	9	2		Consider where exchanged digits are				
2,739 × 28 =	2,739 × 28 = 76,692										

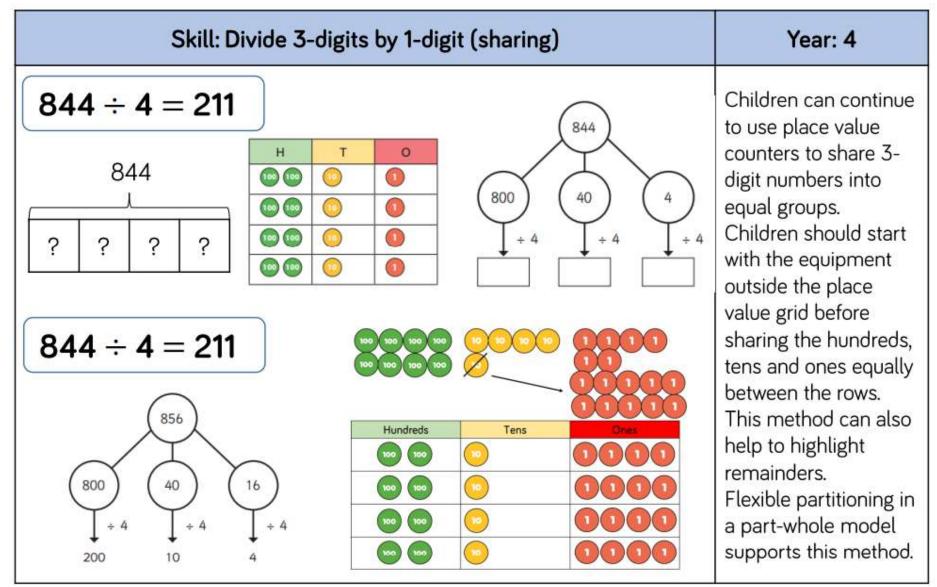


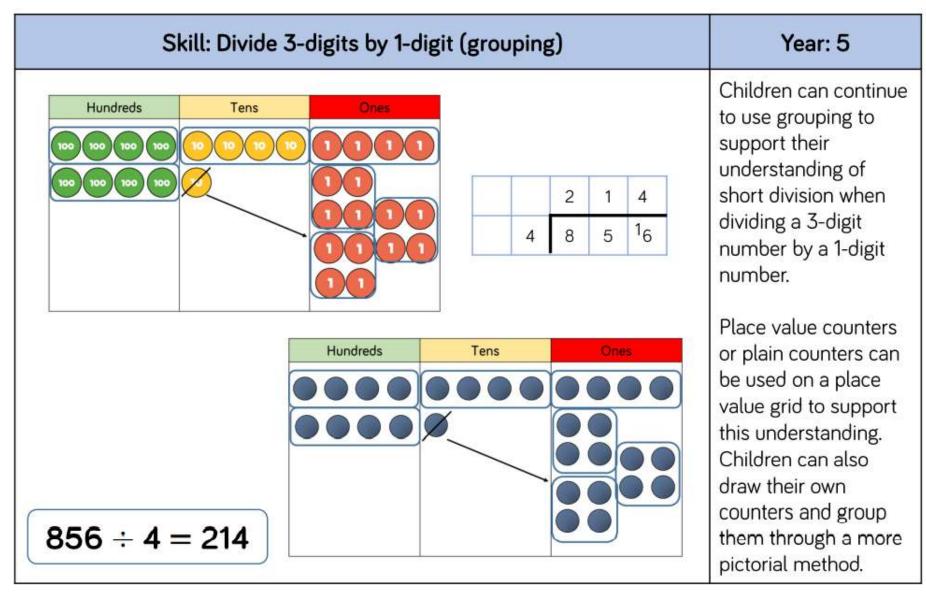

Skill	Year	Representatio	ons and models
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters
Divide 2-digits by 1- digit (no exchange sharing)	digit (no exchange 3 Base 10		Place value counters Part-whole model
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model

Skill	Year	Representatio	ons and models
Divide 2-digits by 1- digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division


Skill	Year	Representation	ns and models
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples






ivialiplication and Division

Skill: Divide	2-digits by 1	I-digit (sharing with remainders)	Year: 3/4
	000 		When dividing numbers with
Tens	Ones	53	remainders, children
CINCIPLIC			can use Base 10 and
CTITITIT		13 13 13 13 1	place value counters to exchange one ten
			for ten ones.
ammo			Starting with the
53	53	5 ÷ 4 = 13 r1	equipment outside the place value grid will highlight
(40) (13)	O O	remainders, as they will be left outside th
$\gamma \gamma$	1		grid once the equal groups have been
^{÷4} (12) (1)		made.
	\bigcirc	000	Flexible partitioning i
10 + + + + 3			a part-whole model supports this metho

Skill: Divide 4-digits by 1-digit (gr	Year: 5					
$8,532 \div 2 = 4,266$	2	4	2	6 1 ₃	6 1 ₂	 Place value counters or plain counters can be used on a place value grid to support children to divide 4- digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

	Skill:	Divide	multi	digits	by 2-di	gits (sl	nort di	vision)	l.	Year: 6
	12	0 4	3 6 ⁴ 3 ⁷	2		432	÷ 12	2 = 3	6	 When children begin to divide up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with
						0	4	8	9	larger remainders.
7,3	35 ÷	- 15 =	= 48	9	15	7	73	13 ₃	¹³ 5	Children will also solve problems with remainders where the
15	30	45	60	75	90	105	120	135	150	quotient can be rounded as appropriate.

Skill: Divide multi-digits by 2-digits (long division)													Year: 6	
1	2 -	0 4 3	3 3 6 7 7	6 2 0 2 2 0	(×30) (×6)	$12 \times 1 = 12$ $12 \times 2 = 24$ $12 \times 3 = 36$ $12 \times 4 = 48$ $12 \times 5 = 60$ $12 \times 6 = 72$ $12 \times 7 = 84$ $12 \times 8 = 96$ $12 \times 7 = 108$ $12 \times 10 = 120$			43	2	•	12 =	= 36	Children can also divide by 2-digit numbers using long division. Children can write ou multiples to support their calculations with larger remainders.
								0	4	8	9		115 15	
							15	7	3	3	5		$1 \times 15 = 15$	Children will also
_							-	6	0	0	0	(×40C	2 × 15 = 30	solve problems with
7	73	35	5 -	- 1!	5 = 4	489		1	3	3	5		$3 \times 15 = 45$	remainders where th
_	,0						-	1	2	0	0	(×80)	$4 \times 15 = 60$	quotient can be
									1	3	5		$5 \times 15 = 75$	rounded as
							-		1	3	5	(×9)	$10 \times 15 = 150$	appropriate.
											0	5		

Skill: Divide mult	Skill: Divide multi digits by 2-digits (long division)											
$372 \div 15 = 24 r12$		5 3	3 3 72	2 7 6 1	4 2 0 2 2	r 5	1	2	$1 \times 15 = 15$ $2 \times 15 = 30$ $3 \times 15 = 45$ $4 \times 15 = 60$ $5 \times 15 = 75$ $10 \times 15 = 150$ $4 \frac{4}{5}$	When a remainder is left at the end of a calculation, children can either leave it as a remainder or convert it to a fraction. This will depend on the context of the question. Children can also answer questions where the quotient needs to be rounded according to the context.		

Glossary

Array – An ordered collection of counters, cubes or other item in rows and columns.

Commutative – Numbers can be multiplied in any order.

Dividend – In division, the number that is divided.

Divisor – In division, the number by which another is divided.

Exchange – Change a number or expression for another of an equal value.

Factor – A number that multiplies with another to make a product.

Multiplicand – In multiplication, a number to be multiplied by another.

Partitioning – Splitting a number into its component parts.

Product – The result of multiplying one number by another.

Quotient - The result of a division

Remainder – The amount left over after a division when the divisor is not a factor of the dividend.

Scaling – Enlarging or reducing a number by a given amount, called the scale factor